Friday, September 27, 2019

Consistent origin of matter-antimatter imbalance and dark matter in the early universe

This is an excerpt for media people or science journalists. A good story could be written from my two newly published papers (out of six). My personal goal would be to wake up some of the most relevant experimentalists. This should be a win-win situation and I hope it won’t fall on deaf ears. Here is the plain-English summary of the two published works (arXiv:1902.01837 & arXiv:1904.03835):

Matter-antimatter asymmetry and dark matter as two of the biggest puzzles in the Universe can be consistently and quantitatively understood under a new mirror-matter theory. The new theory assumes that there exist two parallel sectors of particles that share nothing but gravity and it leads to neutral particle oscillations because of slightly broken mirror symmetry. Specifically, neutron and kaon oscillations with new understanding of quark condensation and phase transition processes in the early Universe provide the necessary mechanism. The idea is that kaon oscillations first create a potential amount of matter-antimatter asymmetry at the stage of strange quark condensation. A new topological transition process (coined “quarkiton”) can then preserve the generated matter-antimatter asymmetry. Without such an asymmetry, we would not have lived in a universe of galaxies and stars. In the end, neutron oscillations convert most of the matter to mirror matter which corresponds to the dark matter we have observed today. Under the same framework, another so-called U(1) or strong CP problem that has baffled particle physicists for almost half a century is understood as well.

Tuesday, September 17, 2019

Tuesday, September 3, 2019

Supersymmetry and Mirror Symmetry

Nature’s supersymmetry (SUSY) is not what most physicists have thought about. It is not making a copy of all existing particles and giving these superparticles some fancy names like something-ino or s-otherthing.

The big mistake on SUSY has been to confuse some properties of SUSY with those of mirror symmetry which has not drawn deserved attention from the physics community. It is actually the mirror symmetry that makes a mirrored copy of particles in our known sector.

Sunday, September 1, 2019

Dark Energy and extended Standard Model with Mirror Matter (SM\(^3\))

The newly proposed phenomenological mirror-matter model (M3) has just been developed into a full-fledged theory – extended Standard Model with Mirror Matter (SM3). Dark energy is simply understood as the leftover vacuum energy due to the spontaneous mirror symmetry breaking.

Here is the link: https://arxiv.org/abs/1908.11838

Human rights of persons of Chinese origin in US

 I have always admired  great efforts by S. B. Woo, president of 80-20 Educational Foundation (https://www.80-20ef.org/), who has been stand...